

Abstracts

Cryogenic Small-Signal Model for 0.55- μ m Gate-Length Ion-Implanted GaAs MESFET's

J. Laskar, J. Kruse and M. Feng. "Cryogenic Small-Signal Model for 0.55- μ m Gate-Length Ion-Implanted GaAs MESFET's." 1992 *Microwave and Guided Wave Letters* 2.6 (Jun. 1992 [MGWL]): 242-244.

The cryogenic microwave performance of 0.5 x 300 μ m gate ion-implanted GaAs MESFET's are presented. The devices studied here have been fabricated as part of a process control monitor chip (PCM) which uses comparable industry standard design rules. We have performed detailed small-signal element modeling to determine the temperature dependence of important physical parameters over a lattice temperature range from 300 K to 115 K. We find appreciable improvement in cut-off frequency and well behaved temperature dependence of transconductance ($g_{\text{sub m}}$) and gate-source capacitance ($C_{\text{sub gs}}$). Empirical relations for the temperature dependence of $f_{\text{sub T}}$, $f_{\text{sub max}}$, $g_{\text{sub m}}$, and $C_{\text{sub gs}}$ that should provide accurate temperature dependant device and circuit models, are presented.

[Return to main document.](#)